
Mastering C#: From
Basics to Advanced
Projects

Runner Code
Presented By

runner-code.com

Table of
Contents

Introduction to C#1.
Variables, Data Types, and Operators2.
Control Statements3.
Functions and Recursion4.
Arrays and Strings5.
Object-Oriented Programming (OOP)6.
Collections and LINQ7.
File Handling8.
Advanced Concepts9.
Advanced Projects10.

Chapter 1:
Introduction
to C#

C# (pronounced "C-sharp") is a modern,
object-oriented programming language
developed by Microsoft in the early 2000s as
part of its .NET framework. Designed by
Anders Hejlsberg, C# combines the power of
C++ with the simplicity of Visual Basic,
making it a versatile and easy-to-learn
language for developers.

Key Features of C#:
Object-Oriented Programming (OOP):1.

Supports principles like encapsulation, inheritance,
polymorphism, and abstraction for building modular and
reusable code.

Type-Safe:2.
Ensures robust error checking and eliminates common
programming mistakes by enforcing strong typing.

Cross-Platform Development:3.
With the advent of .NET Core and .NET 5+, C# allows
developers to create applications for Windows, macOS,
Linux, Android, and iOS.

Rich Standard Library:4.
Offers an extensive library for handling tasks like file
operations, database connectivity, and XML parsing.

Garbage Collection:5.
Built-in memory management reduces the risk of memory
leaks and makes it easier to write efficient
applications.

Integration with .NET Framework:6.
C# seamlessly integrates with the .NET ecosystem,
supporting web, desktop, cloud, and mobile applications.

LINQ (Language Integrated Query):7.
Provides a powerful syntax for querying data from
databases, XML, collections, and more.

Asynchronous Programming:8.
Built-in support for asynchronous operations using the
async and await keywords enhances responsiveness in
applications.

Why Learn
C#?

Windows Development: C# is the primary
language for developing Windows
applications.
Web Applications: Essential for building
dynamic web applications using ASP.NET.
Game Development: The preferred language
for Unity, one of the most popular game
engines.
Enterprise Solutions: Widely used in
large-scale enterprise software due to its
scalability and reliability.

C# is known for its clean and readable
syntax, making it an excellent choice for
beginners and professionals alike. Whether
you're building web apps, desktop apps,
games, or cloud services, C# is a powerful
and flexible language that can adapt to your
development needs.

Setting Up the
Development
Environment

Download and install Visual Studio or Visual
Studio Code.

1.

Install the .NET SDK.2.
Write and run your first program.3.

Your First C#
Program

Code Example:

using System;

class Program
{
 static void Main()
 {
 Console.WriteLine("Welcome to C#
Programming!");
 }
}

Explanation:
using System;: Imports the System
namespace for basic input/output
operations.
Console.WriteLine: Prints text to the
console.
Main: The entry point of the application.

Chapter 2: Variables, Data Types, and Operators
Variables and Data Types

int age = 25;
float height = 5.9f;
char grade = 'A';
bool isStudent = true;
string name = "John";

using System;

class Program
{
 static void Main()
 {
 Console.Write("Enter your age: ");
 int age = int.Parse(Console.ReadLine());
 Console.WriteLine("You entered: " + age);
 }
}

Data Types: int,
float, double, char,
bool, string, var.

Example:

Input and Output Operations
Code Example:

Operators

int a = 10, b = 20;
Console.WriteLine(a + b); // Outputs 30
Console.WriteLine(a > b); // Outputs False

Arithmetic Operators: +, -,
*, /, %
Relational Operators: ==,
!=, <, >, <=, >=
Logical Operators: &&, ||, !

Example:

Chapter 3:
Control
Statements

if (age >= 18)
{
 Console.WriteLine("You are an adult.");
}
else
{
 Console.WriteLine("You are a minor.");
}

if-else Example:

Switch Case
Example:

switch (grade)
{
 case 'A':
 Console.WriteLine("Excellent!");
 break;
 case 'B':
 Console.WriteLine("Good!");
 break;
 default:
 Console.WriteLine("Try harder!");
 break;
}

For Loop
Example:

for (int i = 0; i < 5; i++)
{
 Console.WriteLine(i);
}

While Loop
Example:

int i = 0;
while (i < 5)
{
 Console.WriteLine(i);
 i++;
}

Do-While Loop
Example:

int i = 0;
do
{
 Console.WriteLine(i);
 i++;
} while (i < 5);

Chapter 4:
Functions and
Recursion

int Add(int a, int b)
{
 return a + b;
}

class Program
{
 static void Main()
 {
 Console.WriteLine(Add(10, 20)); //
Outputs 30
 }
}

Defining Functions
Example:

Recursive Functions
Example:

int Factorial(int n)
{
 if (n == 0) return 1;
 return n * Factorial(n - 1);
}

Chapter 5:
Arrays and
Strings

int[] arr = {1, 2, 3, 4, 5};
foreach (int num in arr)
{
 Console.WriteLine(num);
}

Arrays
Example:

Strings
Example:

string name = "John";
Console.WriteLine(name);

Chapter 6:
Object-Oriented
Programming (OOP)

class Car
{
 public string Brand { get; set; }

 public void Honk()
 {
 Console.WriteLine("Beep! Beep!");
 }
}

class Program
{
 static void Main()
 {
 Car myCar = new Car { Brand = "Toyota"
};
 myCar.Honk();
 }
}

Classes and Objects
Example:

Chapter 7:
Collections
and LINQ

List<int> numbers = new List<int> { 1, 2, 3, 4,
5 };
numbers.Add(6);
foreach (int num in numbers)
{
 Console.WriteLine(num);
}

Collections
Example:

var evenNumbers = numbers.Where(n => n % 2 ==
0);
foreach (var num in evenNumbers)
{
 Console.WriteLine(num);
}

LINQ
Example:

Chapter 8:
File Handling

using System.IO;

File.WriteAllText("example.txt", "Hello,
File!");
string content =
File.ReadAllText("example.txt");
Console.WriteLine(content);

File Operations
Example:

Chapter 9:
Advanced
Concepts

async Task FetchData()
{
 await Task.Delay(1000);
 Console.WriteLine("Data fetched.");
}

Asynchronous Programming
Example:

Chapter 10: Advanced Projects
Library Management System
(Full implementation in main
text.)

Final Project:
Library
Management
System in C#

This is a comprehensive implementation of
a Library Management System in C#. The
system allows users to manage books,
add/remove books, and display the library
catalog.

Code
Implementation

Code
Implementation

Code
Implementation

Sample Output
Input/Output Flow

How to Run
the Program

Copy the code into a C# IDE or text editor
(e.g., Visual Studio, JetBrains Rider, or
VS Code with C# extension).
Compile and run the program.
Follow the on-screen instructions to
interact with the system.

Thank You
runner-code.com

info@runner-code.com

